Econometric Modelling

Mock Exam Paper

Duration 2 hours

Answer Question 1 and 2 other questions

Question 1

Consider the following estimation results from Microfit:

Ordinary Least Squares Estimation									

Dependent variable is LC									
49 observations used for estimation from 1950 to 1998									

Regressor				Standard Error			T-Ratio[Prob]		
C	.48291			.27276			1.7705[.084]		
LC(-1)	1.3006			.15514			8.3835[.000]		
LC(-2)	52965			.14277			-3.7098[.001]		
LY	.53920			.077867			6.9246[.000]		
LY(-1)	58446			.13664			-4.2775[.000]		
LY(-2)	.23525			.11179			2.1045[.042]		
LP	16115			.079246			-2.0335[.049]		
LP(-1)	-1) . 23680			.15905				1.4888[.144]	
LP(-2)0		70647		. (086534			816	540[.419]

R-Squared		.9993	33	R-Bar-So	quared				.99920
S.E. of Regression		.009733	35	F-stat.	F (8,	40)	7476	[000.]0.6
Mean of Dependent Variable		12.434	19	S.D. of	Depen	dent	Variab	le	.34370
Residual Sum of Squares		.003789	96	Equation	Log-	like	lihood		162.4210
Akaike Info. Criterion		153.421	.0	Schwarz	Bayes.	ian (Criteri	on	144.9078
DW-statistic 2.0276									
******************									*****
Diagnostic Tests									

* Test Statistics *		LM V∈			*		F Ver		

*	*				*				
* A:Serial Correlatio	n*CHSQ(1)=	.54	504[.460)]*F(1,	39)=	.438	368[.512]
*	*				*				
* B:Functional Form	*CHSQ(1)=	.062	481[.803	3]*F(1,	39)=	.0497	793[.825]
*	*				*				
* C:Normality	*CHSQ(2)=	.37	664[.828	3]*	1	Not app	licabl	.e
*	*				*				
* D:Heteroscedasticit				569[.021			47)=		590[.020]

A:Lagrange multiplier test of residual serial correlation									
B:Ramsey's RESET test using the square of the fitted values									
C:Based on a test of skewness and kurtosis of residuals									
D:Based on the regression of squared residuals on squared fitted values									

Where the variables are:

LC: Log of real consumers expenditure in 1995 prices

LY: log of real personal disposable income in 1995 prices

LP: log of the consumer price index

a.) Briefly explain what the results tell us about the determination of consumption. (40%)

Briefly explain what the t ratios, the F-statistic, R-Squared, the DW statistic, diagnostic test A, diagnostic test B, and diagnostic test D are and what they tell us. (30%)

b.) Explain the following variable deletion test and what it tells us (30%):

Question 2

In the following linear model:

$$y_t = \alpha + \beta x_t + \gamma z_t + u_t$$

- a.) Derive the least squares estimate of α , β and γ (60%)
- b.) Show that the least squares estimate of β is unbiased. (40%)

Question 3

Consider:

$$Y_t = BX_t^{\beta 1} X_{t-1}^{\beta 2} Y_t^{\beta 3}$$

- a.) Show how you would transform this model to estimate it by OLS and relate it to at least 6 alternative static and dynamic forms, giving the restrictions implied. (60%)
- b) Derive the static long run equilibrium of the equations in part a. (40%)

Question 4

a.) Define a stationary process, and explain how you would test for a unit root in a time series. (50%)

b.) Explain what cointegration is and how you would test for it using the Engle-Granger method. How would your answer change if you were dealing with more than 2 variables? (50%)

Question 5

Consider the following model

$$y_t = \alpha + \beta x_t + u_t$$

where
$$E(u_t) = 0$$

 $E(u_t) = \sigma^2$
 $E(u_s, u_t) \neq 0 \ \forall s \neq t$

- a.) What problems would least squares estimators of this model have and what are the likely causes? (60%)
- b.) How would you test for first order serial correlation and then for higher order serial correlation? (40%)

Question 6

- a.) Explain what heteroscedasticity is and why it is a problem. Outline two general tests that could be used to detect it. (60%)
- b.) Show how you could use the generalised least squares $\,$ (GLS) approach to deal with heteroscedasticity. $\,$ (40%)

Question 7

Consider the model

$$y_i = \alpha + \beta x_i + \delta z_i + \gamma w_i + \varepsilon_i$$
 where $i = 1,...N$ and $w_i = 2z_i$

- a.) Explain in detail the problems of estimating the coefficients of this relationship using OLS (40%).
- b.) Discuss at least three ways in which you could detect multicollinearity and determine whether it was a problem (60%).

Question 8

Consider the following model of supply and demand:

Demand:
$$Q_t^D = \beta_0 + \beta_1 P_t + \beta_2 W_t + u_{It}$$

Supply:
$$Q_t^S = \alpha_0 + \alpha_1 P_t + \alpha_2 Z_t + u_{2t}$$

- a.) Derive the reduced form of the system stating your assumptions. (60%)
- b.) Explain how you would estimate the structural parameters of the system and how your answer would be affected by α_1 being zero. (40%)